Name	Stream:	•••••
------	---------	-------

545/2 Chemistry Paper 2 2 hours

BETHANY HIGH SCHOOL UGANDA CERTIFICATE OF EDUCATION CHEMISTRY PAPER 2 TIME: 2 HOURS

Instructions:

- This paper consists of two Sections A and B
- Section A consists of 10 structured questions. Attempt all questions in this section.

Answers to these questions must be written in the spaces provided ONLY.

- Section B consists of 4 semi-structured questions. Attempt ONLYTWO questions from this section. Answers to the questions must be written in the answer booklets provided
- In both sections all working must be shown clearly

	FOR EXAMINER'S USE ONLY													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL

SECTION A: All questions are compulsory

1.	When calcium turnings were added into water in a beaker, bubbles of a colourless gas, X ,and a cloudy solution formed. a) State the identity of :					
	(i) Gas X	(½ mark)				
	(ii) The cloudy solution.	(½ mark)				
	b) Write equation for the reaction leading to the formation of gas X.	(1½ mark)				
	 c) State. (i) How gas X could be identified in the laboratory. 	(1½ marks)				
		(1 1)				
	(11) One laboratory use of the resultant solution in the beaker.	(1 mark)				
2.	a) State the principle on which each of the following methods of separating n(i) Chromatography	nixtures works. (1 mark)				
	(ii) Fractional Crystallization	(1 mark)				
	b) Sate what would be observed and give a reason for your observation, if a r and the following sub- stand was shaken, then allowed to stand for some time (i) Ethanol	nixture of water e.				
	Observation	(½ mark)				
	• Reason	(½ mark)				
	(ii) Edible oil					
	Observation	(½ mark)				
		·····				

• Reason

	 c) Name a piece of apparatus that can be used to separate components of the n (ii) 	nixture in (b (1 mark)
• •	Ethanol obtained from glucose can be converted to ethene as shown below.	
	$C_6 \operatorname{H}_{12}\operatorname{O}_6 \xrightarrow{\operatorname{STEP I}} C_2 \operatorname{H}_5 \operatorname{OH} \xrightarrow{\operatorname{STEP II}} C_2 \operatorname{H}_4$	
	a) Name the process that takes place in (i) Step I	(½ mark)
	(ii) Step II	(½ mark)
	b) State (i) One other product formed together with ethanol in step I	(½ mark)
	(ii) The conditions for the conversion in step II	(1½ marks
	 c) Ethene can be converted to a polymer J of relative molecular mass 16,800. (i) Write the structural formula of J. 	(1 mark)
	(ii) Calculate the number of moles of ethene that make up J .	(1 mark)
	·····	
	(iii) Give one disadvantage of continued use of J.	(½ mark)

4.	a) Name one crystalline and one amorphous allotrope of carbon and in each case state one use of the allotrope that you have named.								
	(i)	Crystalline carbon allotrope.	(½ mark)						
		Use	(½ mark)						
	(ii)	Amorphous carbon allotrope	(½ mark)						
		Use	(½ mark)						
	b) Write e (i) Co	equation for the reaction to show ombustion of carbon monoxide	(1 mark)						
	(ii) Ro	eduction of iron (II, III) oxide by carbon monoxide.	(1½ mark)						
	c) State of	ne practical application of the reaction in (b) (ii)	(½ mark)						
5.	(a) Calciu (i) St	Im oxide is a hygroscopic white powder. The what is meant by the term "hygroscopic substance". (1mark)							
	(ii) W	rite equation to illustrate the hygroscopic nature calcium oxide.	(1 ¹ / ₂ mark)						
	(iii) St	ate one practical application of the hygroscopic nature of calcium of	oxide. (¹ /2mark)						
••	(iv) Na	ame one other oxide which is hygroscopic.	(¹ / ₂ mark)						

.....

) sil 	(b) Write equation for the reaction that can take place when a mixture of calcium ilicon (iv) oxide is heated.		
 6.	a) (i) Define the term electrolyte.	(1 mark)	
	(ii) Water in which a small amount of acid has been added is an electrolyte water is a non- electrolyte. Give a reason for this observation.	whereas pure (1 mark)	
		•••••	
	b) Melton lead (11) bromide conducts electricity whereas solid lead (11) brom Explain briefly	nide does not. (2 marks)	
		• • • • • • • • • • • • • • • • • • • •	
		•••••	
	c) Name the particles by means of which electric current is conducted in (i) Carbon electrodes	(½ mark)	
	(ii) Molten lead (11) bromide	(½ mark)	
7.	Under suitable conditions, hydrogen peroxide, solution $H_2 O_{2(aq)}$ can decomposed produce oxygen.	ose rapidly to	
	a) (1) Write equation for the decomposition of hydrogen peroxide.	(1½ mark)	

(II) ra	apidly.	(1 mark)
 b) Bı (i	urning magnesium ribbon was lowered into a jar of oxygen.) State what was observed.	(1 mark)
(1	i) Write an equation for the reaction that took place.	$(1\frac{1}{2} \text{ marks})$
•••••		
 The a	tomic numbers of elements W chlorine and V are 15, 17 and	20 respectively
a) W	rite the electronic configuration of an atom of element.	20 respectivery.
(i) W	(½ mark)
		(14 manuals)
()	1) X	(72 mark)
b) Sta (i	ate which one of the elements W or Y would form a chloride w) A solid with high melting point.	which is (½ mark)
(i	i) A volatile liquid at room temperature.	(½ mark)
c) Gi	ve reasons for your statement in (b)	(1 mark)
•••••		
d) St	ate how a chloride ion in aqueous solution can be identified.	$(1\frac{1}{2} \text{ mark})$
a) A	metallic element T, reacts with nitrogen to form a compound w	with the formula T_3N_2 .
(i)	State the valency of T.	$(^{1}/_{2} \text{ marks})$
<i>(</i>)		(1) 1)
(11)	write equation for the reaction between T and chlorine.	$(1^{1}/2 \text{ marks})$

b) 3.2g of T reacted completely wi \'th 600 cm³ of nitrogen at s.t.p. Determine the atomic mass of T. (1 mole of a gas occupies 22.4cm³, T reacts with nitrogen in the ratio 3:1)

(02 marks)

10. Substance W is a green powder which shows the following properties.

- It reacts with dilute hydrochloric acid to produce a gas which turns lime water milky
- It decomposes on heating to from a black solid X and the same gas which turns lime water milky. X dissolves in dilute nitric acid to give a blue solution Y which reacts with aqueous ammonia to form a blue precipitate. The precipitate dissolves in excess ammonia to produce a deep blue solution Z.

(a) Identify; (i) W	(1 mark)
(ii) X	(1 mark
(b) Write equation to show what happen when W is heated.	(¹ / ₂ mark)
(c) (i) Name the blue solution Y.	(¹ / ₂ mark)
(ii) Write the formula of the ion that is responsible for the deep blue of solution Z.	colour of (1mark)
(d) State how you would obtain a sample of a metal from solution Y.	(1mark)

SECTION B (30 MARKS)

Answer any two questions only in this section. Extra – questions only in this section. Extra – questions answered will not be marked.

11. a) A pure dry sample of chlorine was prepared in a fume cupboard	d in the laboratory by
adding concentrated hydrochloric acid from a tap funnel onto a so	olid, R in a flask and then
heating the mixture. The gas evolved, was passed through water,	then through a liquid, T ,
before it was collected.	
(i) Identify R .	(1 mark)

(ii) State why the preparation of chlorine was carried out in the fume cupboard. (1 mark)

(iii) Name T and state its role.	(1 mark)
(iv) Give a reason why T was preferred for its role, which you have stated	in (iii) (1 mark)
(v) Why was chloride passed through water?	(½ mark)

(vi) State, giving a reason, a method by which chloride was collected. (1 mark)

(vii) Write equation for the reaction, which led to the formation of chlorine. (1¹/₂ marks)b) Chlorine was bubbled through saturated potassium iodide solution, which was containing tetrachloromethane and the mixture shaken, and left to stand for some time.

	(i) State what was observed.	(2 marks)
	(ii) while equation for the reaction that took place.	(1 /2 IIIdIK)
	c) When exposed to bright sunlight, chlorine water produces a colourless gas, (i) Name the gas	(1/2 mark)
	(ii) Explain briefly, how the gas was formed.	$(2^{1/2} \text{ mark})$ (2 ¹ / ₂ marks)
	d) (i) Write equation for the reaction that can take place between iron and chlo	orine.
	(ii) Give a reason why the reaction in (d) (i) is regarded as oxidation.	$(1\frac{1}{2} \text{ mark})$ (1 mark)
12.	A compound Q consists of 26.7% carbon and 2.2% hydrogen by mass; the re	st being
	a) Calculate the empirical formula of Q. ($H = 1, C = 12, O = 16$)	(3½ marks)
	 b) An aqueous solution of Q turns blue litmus paper pale red. (i) Suggest how the P^H value of a 2M aqueous solution of Q would compa value of a 2M hydrochloric acid. Give a reason for your suggestion. 	re with the P ^H (2 marks)
	(ii) Predict how \mathbf{Q} would react with magnesium powder.	(1½ arks)
	(iii) Write an ionic equation for the reaction that you have predicted in (b)	(ii) (1½ marks)
	c) 100cm ³ of a solution containing 4.5g of Q per dm ³ of solution required examples ium powder for complete reaction. (Mg=24, 1 mole of Q reacts with 1 mole of magnesium.)	ctly 0.12g of

Calculate

	(i) The concentration of \mathbf{Q} in mole per dm ³ .	(3 marks)
	(ii) The formula mass of Q .	(2 marks)
	d) Determine the molecular formula of Q .	(2 marks)
13	Under suitable conditions iron can rust.a) Sate (i) what is meant by the term "rusting."	(1 mark)
	(ii) The condition(s) necessary for iron to rust.	(2 marks)
	b) (i) Draw labeled diagram(s) for a set up of an experiment which can be use the condition(s) you have stated in (a)(ii), is / are necessary for iron to rust.	d to show that (5 marks)
	(ii) State and explain observations that would be made if the experimental so diagrams that you have drawn in (b) (i) was allowed to stand for some days.	et up in the (4 marks)
	c) (i) State two methods by which rusting can be prevented.	(2 marks)
	(ii) Give one reason why rusting must be prevented.	(1 mark)
14	. a) Describe the effect of heat on the nitrates of copper, potassium and silver, i answers with equations.	llustrating your (7 marks)
	b) Potassium nitrate can be used in the preparation of nitric acid.(i) State the conditions and write equation for the reaction that leads to the nitric acid.	formation of (3 marks)
	(ii) Draw a labeled diagram of the set up of apparatus used in the laborator of nitric acid.	ry preparation (3 marks)
	c) Write equation for the reaction of nitric acid with sulphur.	(1½ marks)
	d) State one use of nitric acid.	(½ mark)

END